

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pyangext 0.0.1 documentation

pyangext

pyang + sensible extensions

Contents

	pyangext
	What’s this all about?

	Getting Started
	If you are not a plugin writer

	If you ARE a plugin writer

	Stuff Doesn’t Work

	Can I help?
	Well-known list of TODOs

	Doubts

	Ultimate Goals

	Module Reference
	pyangext package
	Submodules

	pyangext.cli module
	Command Line Interface

	pyangext.definitions module

	pyangext.paths module

	pyangext.utils module

	Module contents

	License

	Authors

	Changelog
	Version 0.0.1 (2016-06-01)
	Features

	Documentation

	Test

	How to contribute
	Pull-Requests
	Code Guidelines

	Reporting a Bug

	Requesting a Feature

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Anderson Bravalheri.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyangext 0.0.1 documentation

pyangext

Sensible extensions for pyang [https://github.com/mbj4668/pyang]

[image: Documentation Status]
 [http://pyangext.readthedocs.io/en/latest/?badge=latest][image: https://travis-ci.org/abravalheri/pyangext.svg?branch=master]
 [https://travis-ci.org/abravalheri/pyangext][image: https://coveralls.io/repos/github/abravalheri/pyangext/badge.svg?branch=master]
 [https://coveralls.io/github/abravalheri/pyangext?branch=master]
What’s this all about?

YANG [http://tools.ietf.org/html/rfc6020] is a data modeling language
born in the context of configuration and management of network devices
(like routers and other internet-related stuff). It is envisioned to work
with XML data encoding and remote procedure calls (so 2000s ...), but it is
extremelly flexible and can be used for a multitude of purposes.
In turn, pyang [https://github.com/mbj4668/pyang] is a python project
that provides parsing, validation, transformation and code generation
functionalities.
Despite of being extensible, the pyang [https://github.com/mbj4668/pyang] code is a little bit complex,
and the documentation scarce. This makes the task of building plugins
difficult.

pyangext aims to provide a common foundation for plugins,
wrapping pyang [https://github.com/mbj4668/pyang] features, and making easier to use it programatically
outside pyang [https://github.com/mbj4668/pyang] own code-base.

If you are one of the pyang [https://github.com/mbj4668/pyang] authors...

You guys have done an amazing job, please don’t feel upset about this
documentation. I’m trying to make it interesting and a little bit funny.
The ultimate goal is to have an amazing pyang [https://github.com/mbj4668/pyang] environment,
and if you would like to merge pyangext inside pyang [https://github.com/mbj4668/pyang],
please let me know.

Getting Started

If you are not a plugin writer

Well, pyangext will not exactly change your life... but you can
have a little benefit from it, so let’s install all the things!

sudo pip install pyangext
drop sudo if you are using a virtualenv or pyenv

There are some python packages that register themselves as pyang [https://github.com/mbj4668/pyang] plugins
using setuptools [https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins] entry-points. While pyang [https://github.com/mbj4668/pyang] does not nativelly support
it, pyangext will consider it and generate a complete plugin path.
You can activate it by doing:

eval $(pyangext --export-path)

If you like it, you can also include it in your .(ba|z)shrc file.

DONE

If you ARE a plugin writer

You have probably noticed that pyang [https://github.com/mbj4668/pyang] does not support the standard
setuptools [https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins] entry-points way of writing plugins. Instead it requires
that the user either copies the plugin to the pyang [https://github.com/mbj4668/pyang] plugins directory,
or changes manually the PYANG_PLUGINPATH env var.
Sometimes this makes difficult to describe how to use your plugin,
e.g. pyangbind [https://github.com/robshakir/pyangbind].

Using, pyangext you can:

	Create an empty plugin package inside your project
(folder with just and empty __init__.py file inside).

	Put just your plugin modules inside it
(.py files containing pyang_plugin_init function).

	Register a setuptools [https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins] entry-point under the yang.plugins
section, with the name of your plugin, pointint to that function.

	Ask your users in the documentation to use
eval $(pyangext --export-path) before runing pyang [https://github.com/mbj4668/pyang],
or exchange the pyang [https://github.com/mbj4668/pyang] shell commad by pyangext run
with the same arguments.

	Distribute your package using PyPI/pip tools.

Additionally pyangext provides two other submodules with functions
that can be used in your code.
The pyangext.utils module provides functions like create_context,
parse, dump, walk. This functions are very useful, and a little
example is provided bellow:

from pyangext.utils import create_context, dump, find, parse, walk
ctx = create_context(keep_comments=True, features=['if:if-mib'])
ast = parse('leaf id { type int32; }', ctx) # tree-ish structure
print(dump(ast, ctx)) # produce YANG code
used_types = walk(ast,
 select=lambda node: node.keyword == 'type',
 apply=lambda node: node.arg)
=> ['int32']
int32_nodes = find(ast, 'type', 'int32') # list with 1 object

pyang.Context object plays a central role in the pyang [https://github.com/mbj4668/pyang]
architecture. The create_context can be used to create this object in a
similar way it is created by the pyang [https://github.com/mbj4668/pyang] CLI.

The pyangext.definitions on the other hand provides some constants like
the BUILT_IN_TYPES list.

Note

There are few well known issues with create_context and
parse functions preventing them to be used by standalone python scripts,
like the lack of YANG deviation support. Despite they can be used
in most situations, the prefered way of manipulating the YANG
Abstract Syntax Tree (AST) is yet writing a plugin.

See also

pyangext.cli
pyangext.utils

Stuff Doesn’t Work

This work was tested and I think it’s stable, but any feedback you can
give me on this would be gratefully received (see section Reporting a Bug
at Contribution Guidelines [http://pyangext.readthedocs.io/en/latest/contributing.html].).

Can I help?

Yes, please! Contributions of any kind are welcome, and also feel free
to ask your questions!

Please take a look at the Contribution Guidelines [http://pyangext.readthedocs.io/en/latest/contributing.html].

Well-known list of TODOs

	Make sure augment, deviation and include work with both
ctx.add_module and parse. (by writing tests and making it pass).

	Use ctx.add_module under the hood when a file name is passed to
parse. If it is a module, why not add it to context as well?

	Make parse and dump work with yin format.

Doubts

	Perform ctx.validate and validate_module under the hood?

	Abstract Context and i_ magic method?

Ultimate Goals

	Allow pyang [https://github.com/mbj4668/pyang] plugins to be written as standalone python scripts.
(I think it is better to have small focused scripts, instead of
a huge amount of options in the pyang [https://github.com/mbj4668/pyang] CLI)

	Merged into pyang [https://github.com/mbj4668/pyang] own code base.

 Copyright 2016, Anderson Bravalheri.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyangext 0.0.1 documentation

pyangext

	pyangext package
	Submodules

	pyangext.cli module
	Command Line Interface

	pyangext.definitions module

	pyangext.paths module

	pyangext.utils module

	Module contents

 Copyright 2016, Anderson Bravalheri.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyangext 0.0.1 documentation

 	pyangext

pyangext package

Submodules

pyangext.cli module

Extension for the pyang command line interface.

This module includes tools for augmenting PYANG_PLUGINPATH with
the location of auto-discovered pyang plugins.

Pyang do not use the setuptools to register plugins. Instead it requires
that the paths of all directories containing plugins to be present in the
PYANG_PLUGINPATH environment variable.

pyangext reads all entry points under yang.plugins, detect the path
to the file that contains the function registered, and builds a list with
the containing directories.

In this sense, pyangext run command can be used as a bridge to
the pyang command, but using the auto-discovery feature.

Note

Including non pyang-plugin python files alongside pyang-plugins
python files (in the same directory) will result in a pyang CLI crash.

It is recommended that the function registered as entry-point follows
the proprietary pyang plugin convention, or in other words:

	it should be named pyang_plugin_init

	it should call pyang.plugin.register_plugin with an instance of
pyang.plugin.PyangPlugin as argument.

See also

https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins

Command Line Interface

	Usage:

	pyangext [OPTIONS] COMMAND [ARGS]

	Options:

	

	
-h, --help
	Show this message and exit.

	
-v, --version
	Show the version and exit.

	
--path
	Prints the auto discovered plugin path.
Python packages that register an entry-point
inside yang.plugins will be auto-detected.

	
--init, --export-path

		Prints an export shell statement with the auto
discovered plugin path.

This may be used by shell script to configure
PYANG_PLUGINPATH environment variable.

Example: eval $(pyangext --export-path)

	
--help
	Show this message and exit.

	Commands:

	

	call:	invoke pyang script with plugin path adjusted using
auto-discovery.

	
pyangext.cli.export_path(ctx, _, value)[source]

	Prints an export shell statement with the auto discovered plugin path.

This may be used by shell script to configure PYANG_PLUGINPATH
environment variable.

Example

eval $(pyangext --export-path)

	
pyangext.cli.print_path(ctx, _, value)[source]

	Prints the auto discovered plugin path.

Packages that register an yang.plugins
entry-point will be auto-detected.

pyangext.definitions module

Meta information about YANG modeling language.

See also

https://tools.ietf.org/html/rfc6020

	
pyangext.definitions.BUILT_IN_TYPES = ['binary', 'bits', 'boolean', 'decimal64', 'empty', 'enumeration', 'identityref', 'instance-identifier', 'int16', 'int32', 'int64', 'int8', 'leafref', 'string', 'uint16', 'uint32', 'uint64', 'uint8', 'union']

	Types supported by default in the YANG language.

	
pyangext.definitions.DATA_STATEMENTS = ['container', 'leaf', 'leaf-list', 'list', 'anyxml']

	Statements that denote a data node in the abstract tree.

	
pyangext.definitions.HEADER_STATEMENTS = ['organization', 'contact', 'revision', 'yang-version']

	Descriptive statements used in the header of a module or submodule.

	
pyangext.definitions.ID_STATEMENTS = ['namespace', 'prefix']

	Statements used to identify the module.

	
pyangext.definitions.PREFIX_SEPARATOR = ':'

	Character used to denote prefix in YANG language.

	
pyangext.definitions.YANG_KEYWORDS = ['action', 'anydata', 'anyxml', 'argument', 'augment', 'base', 'belongs-to', 'bit', 'case', 'choice', 'config', 'contact', 'container', 'default', 'description', 'deviate', 'deviation', 'enum', 'error-app-tag', 'error-message', 'extension', 'feature', 'fraction-digits', 'grouping', 'identity', 'if-feature', 'import', 'include', 'input', 'key', 'leaf', 'leaf-list', 'length', 'list', 'mandatory', 'max-elements', 'min-elements', 'modifier', 'module', 'must', 'namespace', 'notification', 'ordered-by', 'organization', 'output', 'path', 'pattern', 'position', 'prefix', 'presence', 'range', 'reference', 'refine', 'require-instance', 'revision', 'revision-date', 'rpc', 'status', 'submodule', 'type', 'typedef', 'unique', 'units', 'uses', 'value', 'when', 'yang-version', 'yin-element']

	YANG language Keywords.

pyangext.paths module

Automatically discover pyang plugins by reading setuptools entry-points.

	
pyangext.paths.discover()[source]

	Discovers pyang plugins registered using setuptools entry points.

Collects the path for all python modules that have functions
registered as an entry point inside yang.plugins group.

Ideally the function registered should be named pyang_plugin_init.
It is also important to not include non-pyang-plugin python modules
in the same directory of this module.

	Returns:	Array of paths that contains python modules with pyang plugins.

	Reference:

	https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins

	
pyangext.paths.expanded()[source]

	Combines the auto-discovered plugin paths with env PYANG_PLUGINPATH.

This function appends paths discovered using discover function
to the list provided by PYANG_PLUGINPATH environment variable.
It also removes duplicated entries from the resulting list.

	Returns:	Array of paths that contains python modules with pyang plugins.

pyangext.utils module

Utility belt for working with pyang and pyangext.

	
pyangext.utils.create_context(path='.', *options, **kwargs)[source]

	Generates a pyang context.

The dict options and keyword arguments are similar to the command
line options for pyang. For plugindir use env var
PYANG_PLUGINPATH. For path option use the argument with the
same name, or PYANG_MODPATH env var.

	Parameters:	
	path (str [http://docs.python.org/2.7/library/functions.html#str]) – location of YANG modules.
(Join string with os.pathsep for multiple locations).
Default is the current working dir.

	*options – list of dicts, with options to be passed to context.
See bellow.

	**kwargs – similar to options but have a higher precedence.
See bellow.

	Keyword Arguments:

		
	print_error_code (bool) –
On errors, print the error code instead
of the error message. Default False.

	warnings (list) –
If contains error, treat all warnings
as errors, except any other error code in the list.
If contains none, do not report any warning.

	errors (list) –
Treat each error code container as an error.

	ignore_error_tags (list) –
Ignore error code.
(For a list of error codes see pyang --list-errors).

	ignore_errors (bool) –
Ignore all errors. Default False.

	canonical (bool) –
Validate the module(s) according to the
canonical YANG order. Default False.

	yang_canonical (bool) –
Print YANG statements according to the
canonical order. Default False.

	yang_remove_unused_imports (bool) –
Remove unused import statements
when printing YANG. Default False.

	trim_yin (bool) –
In YIN input modules, trim whitespace
in textual arguments. Default False.

	lax_xpath_checks (bool) –
Lax check of XPath expressions.
Default False.

	strict (bool) –
Force strict YANG compliance. Default False.

	max_line_len (int) –
Maximum line length allowed. Disabled by default.

	max_identifier_len (int) –
Maximum identifier length allowed.
Disabled by default.

	features (list) –
Features to support, default all.
Format <modname>:[<feature>,]*.

	keep_comments (bool) –
Do not discard comments. Default True.

	no_path_recurse (bool) –
Do not recurse into directories
in the yang path. Default False.

	Returns:	Context object for pyang usage

	Return type:	pyang.Context

	
pyangext.utils.compare_prefixed(arg1, arg2, prefix_sep=':', ignore_prefix=False)[source]

	Compare 2 arguments : prefixed strings or tuple (prefix, string)

	Parameters:	
	arg1 (str or tuple) – first argument

	arg2 (str or tuple) – first argument

	prefix_sep (str [http://docs.python.org/2.7/library/functions.html#str]) – prefix string separator (default: ':')

	Returns:	bool

	
pyangext.utils.qualify_str(arg, prefix_sep=':')[source]

	Transform prefixed strings in tuple (prefix, string)

	
pyangext.utils.select(statements, keyword=None, arg=None, ignore_prefix=False)[source]

	Given a list of statements filter by keyword, or argument or both.

	Parameters:	
	statements (list of pyang.statements.Statement) – list of statements to be filtered.

	keyword (str [http://docs.python.org/2.7/library/functions.html#str]) – if specified the statements should have this keyword

	arg (str [http://docs.python.org/2.7/library/functions.html#str]) – if specified the statements should have this argument

keyword and arg can be also used as keyword arguments.

	Returns:	nodes that matches the conditions

	Return type:	list [http://docs.python.org/2.7/library/functions.html#list]

	
pyangext.utils.find(parent, keyword=None, arg=None, ignore_prefix=False)[source]

	Select all sub-statements by keyword, or argument or both.

See also

function select()

	
pyangext.utils.dump(node, file_obj=None, prev_indent='', indent_string=' ', ctx=None)[source]

	Generate a string representation of an abstract syntax tree.

	Parameters:	
	node (pyang.statements.Statement) – object to be represented

	file_obj (file [http://docs.python.org/2.7/library/functions.html#file]) – file-like object where the representation
will be dumped. If nothing is passed, the method returns
a string

	Keyword Arguments:

		
	prev_indent (str) –
string to be added to the produced indentation

	indent_string (str) –
string to be used as indentation

	ctx (pyang.Context) –
context object used to generate string
representation. If no context is passed, a dummy object
is used with default configuration

	Returns:	text content if file_obj is not specified

	Return type:	str [http://docs.python.org/2.7/library/functions.html#str]

	
pyangext.utils.check(ctx, rescue=False)[source]

	Check existence of errors or warnings in context.

Code mostly borrowed from pyang script.

	Parameters:	ctx (pyang.Context) – pyang context to be checked.

	Keyword Arguments:

		rescue (bool) –
if True, no exception/warning will be raised.

	Raises:	SyntaxError –
if errors detected

	Warns:	SyntaxWarning –
if warnings detected

	Returns:	(list of errors, list of warnings), if rescue is True

	Return type:	tuple [http://docs.python.org/2.7/library/functions.html#tuple]

	
pyangext.utils.parse(text, ctx=None)[source]

	Parse a YANG statement into an Abstract Syntax subtree.

	Parameters:	
	text (str [http://docs.python.org/2.7/library/functions.html#str]) – file name for a YANG module or text

	ctx (optional pyang.Context) – context used to validate text

	Returns:	Abstract syntax subtree

	Return type:	pyang.statements.Statement

Note

The parse function can be used to parse small amounts of text.
If yout plan to parse an entire YANG (sub)module, please use instead:

ast = ctx.add_module(module_name, text_contet)

It is also well known that parse function cannot solve
YANG deviations yet.

	
pyangext.utils.walk(parent, select=<function <lambda>>, apply=<function <lambda>>, key='substmts')[source]

	Recursivelly find nodes and/or apply a function to them.

	Parameters:	
	parent (pyang.statements.Statement) – root of the subtree were
the search will take place.

	select – optional callable that receives a node and returns a bool
(True if the node matches the criteria)

	apply – optional callable that are going to be applied to the node
if it matches the criteria

	key (str [http://docs.python.org/2.7/library/functions.html#str]) – property where the children nodes are stored,
default is substmts

	Returns:	results collected from the apply function

	Return type:	list [http://docs.python.org/2.7/library/functions.html#list]

Module contents

Critical missing features for pyang plugin users and authors.

 Copyright 2016, Anderson Bravalheri.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyangext 0.0.1 documentation

License

Mozilla Public License, version 2.0

1. Definitions

1.1. "Contributor"

 means each individual or legal entity that creates, contributes to the
 creation of, or owns Covered Software.

1.2. "Contributor Version"

 means the combination of the Contributions of others (if any) used by a
 Contributor and that particular Contributor's Contribution.

1.3. "Contribution"

 means Covered Software of a particular Contributor.

1.4. "Covered Software"

 means Source Code Form to which the initial Contributor has attached the
 notice in Exhibit A, the Executable Form of such Source Code Form, and
 Modifications of such Source Code Form, in each case including portions
 thereof.

1.5. "Incompatible With Secondary Licenses"
 means

 a. that the initial Contributor has attached the notice described in
 Exhibit B to the Covered Software; or

 b. that the Covered Software was made available under the terms of
 version 1.1 or earlier of the License, but not also under the terms of
 a Secondary License.

1.6. "Executable Form"

 means any form of the work other than Source Code Form.

1.7. "Larger Work"

 means a work that combines Covered Software with other material, in a
 separate file or files, that is not Covered Software.

1.8. "License"

 means this document.

1.9. "Licensable"

 means having the right to grant, to the maximum extent possible, whether
 at the time of the initial grant or subsequently, any and all of the
 rights conveyed by this License.

1.10. "Modifications"

 means any of the following:

 a. any file in Source Code Form that results from an addition to,
 deletion from, or modification of the contents of Covered Software; or

 b. any new file in Source Code Form that contains any Covered Software.

1.11. "Patent Claims" of a Contributor

 means any patent claim(s), including without limitation, method,
 process, and apparatus claims, in any patent Licensable by such
 Contributor that would be infringed, but for the grant of the License,
 by the making, using, selling, offering for sale, having made, import,
 or transfer of either its Contributions or its Contributor Version.

1.12. "Secondary License"

 means either the GNU General Public License, Version 2.0, the GNU Lesser
 General Public License, Version 2.1, the GNU Affero General Public
 License, Version 3.0, or any later versions of those licenses.

1.13. "Source Code Form"

 means the form of the work preferred for making modifications.

1.14. "You" (or "Your")

 means an individual or a legal entity exercising rights under this
 License. For legal entities, "You" includes any entity that controls, is
 controlled by, or is under common control with You. For purposes of this
 definition, "control" means (a) the power, direct or indirect, to cause
 the direction or management of such entity, whether by contract or
 otherwise, or (b) ownership of more than fifty percent (50%) of the
 outstanding shares or beneficial ownership of such entity.

2. License Grants and Conditions

2.1. Grants

 Each Contributor hereby grants You a world-wide, royalty-free,
 non-exclusive license:

 a. under intellectual property rights (other than patent or trademark)
 Licensable by such Contributor to use, reproduce, make available,
 modify, display, perform, distribute, and otherwise exploit its
 Contributions, either on an unmodified basis, with Modifications, or
 as part of a Larger Work; and

 b. under Patent Claims of such Contributor to make, use, sell, offer for
 sale, have made, import, and otherwise transfer either its
 Contributions or its Contributor Version.

2.2. Effective Date

 The licenses granted in Section 2.1 with respect to any Contribution
 become effective for each Contribution on the date the Contributor first
 distributes such Contribution.

2.3. Limitations on Grant Scope

 The licenses granted in this Section 2 are the only rights granted under
 this License. No additional rights or licenses will be implied from the
 distribution or licensing of Covered Software under this License.
 Notwithstanding Section 2.1(b) above, no patent license is granted by a
 Contributor:

 a. for any code that a Contributor has removed from Covered Software; or

 b. for infringements caused by: (i) Your and any other third party's
 modifications of Covered Software, or (ii) the combination of its
 Contributions with other software (except as part of its Contributor
 Version); or

 c. under Patent Claims infringed by Covered Software in the absence of
 its Contributions.

 This License does not grant any rights in the trademarks, service marks,
 or logos of any Contributor (except as may be necessary to comply with
 the notice requirements in Section 3.4).

2.4. Subsequent Licenses

 No Contributor makes additional grants as a result of Your choice to
 distribute the Covered Software under a subsequent version of this
 License (see Section 10.2) or under the terms of a Secondary License (if
 permitted under the terms of Section 3.3).

2.5. Representation

 Each Contributor represents that the Contributor believes its
 Contributions are its original creation(s) or it has sufficient rights to
 grant the rights to its Contributions conveyed by this License.

2.6. Fair Use

 This License is not intended to limit any rights You have under
 applicable copyright doctrines of fair use, fair dealing, or other
 equivalents.

2.7. Conditions

 Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
 Section 2.1.

3. Responsibilities

3.1. Distribution of Source Form

 All distribution of Covered Software in Source Code Form, including any
 Modifications that You create or to which You contribute, must be under
 the terms of this License. You must inform recipients that the Source
 Code Form of the Covered Software is governed by the terms of this
 License, and how they can obtain a copy of this License. You may not
 attempt to alter or restrict the recipients' rights in the Source Code
 Form.

3.2. Distribution of Executable Form

 If You distribute Covered Software in Executable Form then:

 a. such Covered Software must also be made available in Source Code Form,
 as described in Section 3.1, and You must inform recipients of the
 Executable Form how they can obtain a copy of such Source Code Form by
 reasonable means in a timely manner, at a charge no more than the cost
 of distribution to the recipient; and

 b. You may distribute such Executable Form under the terms of this
 License, or sublicense it under different terms, provided that the
 license for the Executable Form does not attempt to limit or alter the
 recipients' rights in the Source Code Form under this License.

3.3. Distribution of a Larger Work

 You may create and distribute a Larger Work under terms of Your choice,
 provided that You also comply with the requirements of this License for
 the Covered Software. If the Larger Work is a combination of Covered
 Software with a work governed by one or more Secondary Licenses, and the
 Covered Software is not Incompatible With Secondary Licenses, this
 License permits You to additionally distribute such Covered Software
 under the terms of such Secondary License(s), so that the recipient of
 the Larger Work may, at their option, further distribute the Covered
 Software under the terms of either this License or such Secondary
 License(s).

3.4. Notices

 You may not remove or alter the substance of any license notices
 (including copyright notices, patent notices, disclaimers of warranty, or
 limitations of liability) contained within the Source Code Form of the
 Covered Software, except that You may alter any license notices to the
 extent required to remedy known factual inaccuracies.

3.5. Application of Additional Terms

 You may choose to offer, and to charge a fee for, warranty, support,
 indemnity or liability obligations to one or more recipients of Covered
 Software. However, You may do so only on Your own behalf, and not on
 behalf of any Contributor. You must make it absolutely clear that any
 such warranty, support, indemnity, or liability obligation is offered by
 You alone, and You hereby agree to indemnify every Contributor for any
 liability incurred by such Contributor as a result of warranty, support,
 indemnity or liability terms You offer. You may include additional
 disclaimers of warranty and limitations of liability specific to any
 jurisdiction.

4. Inability to Comply Due to Statute or Regulation

 If it is impossible for You to comply with any of the terms of this License
 with respect to some or all of the Covered Software due to statute,
 judicial order, or regulation then You must: (a) comply with the terms of
 this License to the maximum extent possible; and (b) describe the
 limitations and the code they affect. Such description must be placed in a
 text file included with all distributions of the Covered Software under
 this License. Except to the extent prohibited by statute or regulation,
 such description must be sufficiently detailed for a recipient of ordinary
 skill to be able to understand it.

5. Termination

5.1. The rights granted under this License will terminate automatically if You
 fail to comply with any of its terms. However, if You become compliant,
 then the rights granted under this License from a particular Contributor
 are reinstated (a) provisionally, unless and until such Contributor
 explicitly and finally terminates Your grants, and (b) on an ongoing
 basis, if such Contributor fails to notify You of the non-compliance by
 some reasonable means prior to 60 days after You have come back into
 compliance. Moreover, Your grants from a particular Contributor are
 reinstated on an ongoing basis if such Contributor notifies You of the
 non-compliance by some reasonable means, this is the first time You have
 received notice of non-compliance with this License from such
 Contributor, and You become compliant prior to 30 days after Your receipt
 of the notice.

5.2. If You initiate litigation against any entity by asserting a patent
 infringement claim (excluding declaratory judgment actions,
 counter-claims, and cross-claims) alleging that a Contributor Version
 directly or indirectly infringes any patent, then the rights granted to
 You by any and all Contributors for the Covered Software under Section
 2.1 of this License shall terminate.

5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
 license agreements (excluding distributors and resellers) which have been
 validly granted by You or Your distributors under this License prior to
 termination shall survive termination.

6. Disclaimer of Warranty

 Covered Software is provided under this License on an "as is" basis,
 without warranty of any kind, either expressed, implied, or statutory,
 including, without limitation, warranties that the Covered Software is free
 of defects, merchantable, fit for a particular purpose or non-infringing.
 The entire risk as to the quality and performance of the Covered Software
 is with You. Should any Covered Software prove defective in any respect,
 You (not any Contributor) assume the cost of any necessary servicing,
 repair, or correction. This disclaimer of warranty constitutes an essential
 part of this License. No use of any Covered Software is authorized under
 this License except under this disclaimer.

7. Limitation of Liability

 Under no circumstances and under no legal theory, whether tort (including
 negligence), contract, or otherwise, shall any Contributor, or anyone who
 distributes Covered Software as permitted above, be liable to You for any
 direct, indirect, special, incidental, or consequential damages of any
 character including, without limitation, damages for lost profits, loss of
 goodwill, work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses, even if such party shall have been
 informed of the possibility of such damages. This limitation of liability
 shall not apply to liability for death or personal injury resulting from
 such party's negligence to the extent applicable law prohibits such
 limitation. Some jurisdictions do not allow the exclusion or limitation of
 incidental or consequential damages, so this exclusion and limitation may
 not apply to You.

8. Litigation

 Any litigation relating to this License may be brought only in the courts
 of a jurisdiction where the defendant maintains its principal place of
 business and such litigation shall be governed by laws of that
 jurisdiction, without reference to its conflict-of-law provisions. Nothing
 in this Section shall prevent a party's ability to bring cross-claims or
 counter-claims.

9. Miscellaneous

 This License represents the complete agreement concerning the subject
 matter hereof. If any provision of this License is held to be
 unenforceable, such provision shall be reformed only to the extent
 necessary to make it enforceable. Any law or regulation which provides that
 the language of a contract shall be construed against the drafter shall not
 be used to construe this License against a Contributor.

10. Versions of the License

10.1. New Versions

 Mozilla Foundation is the license steward. Except as provided in Section
 10.3, no one other than the license steward has the right to modify or
 publish new versions of this License. Each version will be given a
 distinguishing version number.

10.2. Effect of New Versions

 You may distribute the Covered Software under the terms of the version
 of the License under which You originally received the Covered Software,
 or under the terms of any subsequent version published by the license
 steward.

10.3. Modified Versions

 If you create software not governed by this License, and you want to
 create a new license for such software, you may create and use a
 modified version of this License if you rename the license and remove
 any references to the name of the license steward (except to note that
 such modified license differs from this License).

10.4. Distributing Source Code Form that is Incompatible With Secondary
 Licenses If You choose to distribute Source Code Form that is
 Incompatible With Secondary Licenses under the terms of this version of
 the License, the notice described in Exhibit B of this License must be
 attached.

Exhibit A - Source Code Form License Notice

 This Source Code Form is subject to the
 terms of the Mozilla Public License, v.
 2.0. If a copy of the MPL was not
 distributed with this file, You can
 obtain one at
 http://mozilla.org/MPL/2.0/.

If it is not possible or desirable to put the notice in a particular file,
then You may include the notice in a location (such as a LICENSE file in a
relevant directory) where a recipient would be likely to look for such a
notice.

You may add additional accurate notices of copyright ownership.

Exhibit B - "Incompatible With Secondary Licenses" Notice

 This Source Code Form is "Incompatible
 With Secondary Licenses", as defined by
 the Mozilla Public License, v. 2.0.

 Copyright 2016, Anderson Bravalheri.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyangext 0.0.1 documentation

Developers

	Anderson Bravalheri <andersonbravalheri@gmail.com>

 Copyright 2016, Anderson Bravalheri.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyangext 0.0.1 documentation

Changelog

Version 0.0.1 (2016-06-01)

Features

	ast:

	add select, find, from_tuple, append
(67724329 [https://github.com/abravalheri/pyangext/commit/67724329d8383404863f9c6f7aa5496ba9c90bd9])

	add walk function to traverse tree
(1f334d3d [https://github.com/abravalheri/pyangext/commit/1f334d3deaccd12366f110ec5f98dc4c29824b4c])

	auto-discover: add plugins, setuptools way
(10794a94 [https://github.com/abravalheri/pyangext/commit/10794a9412fbbda6f88ee8d4069960efd09bcffa])

	ctx: add utility function to context creation
(72f43d90 [https://github.com/abravalheri/pyangext/commit/72f43d9012a61dc665626e613d45dbbd6d036807])

	parse: add parse function (str => AST)
(ab3b465b [https://github.com/abravalheri/pyangext/commit/ab3b465bd29bd334ca126f5a4b2ff39968a31948])

Documentation

	improve doc generation and contents
(e471c595 [https://github.com/abravalheri/pyangext/commit/e471c59593de288df9abbf4fd6196d20323d7b27])

	create_context: document options for context
(c2ad6d0f [https://github.com/abravalheri/pyangext/commit/c2ad6d0fa006c801c4bdcb8bfa676effd3741d53])

	project: improve overall project docs.
(e1b60ecd [https://github.com/abravalheri/pyangext/commit/e1b60ecdf6df06bf30b11c19b75954356bad505f])

	requirements: create a separated req file
(94882cd4 [https://github.com/abravalheri/pyangext/commit/94882cd41452e7892fa977ff846f72fea8cba4bc])

Test

	cli: Add cli tests
(11501c44 [https://github.com/abravalheri/pyangext/commit/11501c443bbfecc4f328466baea18f163ca95060])

 Copyright 2016, Anderson Bravalheri.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pyangext 0.0.1 documentation

How to contribute

Pull-requests and discussions are essential for any open-source project.
Any contribution to this project will be considered lovely. Here’s just
a quick guide to help you in this journey.

Please have in mind that nothing can be considered 100% truth and
immutable (including this statement). This project will not adhere to
any strict way of development.

Pull-Requests

Github has two great GREAT articles about contributing:
Contributing to Open Source on GitHub [https://guides.github.com/activities/contributing-to-open-source/]
and Using pull requests [https://help.github.com/articles/using-pull-requests/].
Please make sure to read it in your lifetime (everyone that reads became
a better person).

Note

Oh man, guides.github.com [https://guides.github.com/] and
help.github.com [https://help.github.com] are astonishing!

Please, try to keep your commit messages as communicative as possible.
There is a good
reference [https://github.com/erlang/otp/wiki/Writing-good-commit-messages]
for it as well.

Note

I usually think in the commit itself as an implicit subject of
commit message. For example: [This commit] Add .gitignore
Also take a look at this commit message format proposal [https://gist.github.com/abravalheri/34aeb7b18d61392251a2], that borrows some convention
from AngularJS [https://github.com/angular/angular.js/blob/master/CONTRIBUTING.md].

Communication is always handy! If you have any doubt or would like to
discuss your thoughts, you are more than welcome to send me a message!
Please comment directly on the code, open an issue, submit a pull
request, mention me anywhere... I think GitHub has good tools to help
developers communicate and share experiences.

Code Guidelines

This repository try to adhere to
PEP8 [https://www.python.org/dev/peps/pep-0008/]
as much as possible.

Please make use of tools like
flake8 [https://flake8.readthedocs.io],
pylint [https://www.pylint.org],
isort [https://github.com/timothycrosley/isort], and
pre-commit [http://pre-commit.com] before submitting
your code. There are configuration files for all these tools in the
root of the repository and the easiest way of starting is by doing:

sudo pip install pre-commit
drop sudo if you are using a virtualenv or pyenv
inside project directory:
pre-commit install
pre-commit run --all-files

Please also consider running the test suite before submitting a pull request:

python setup.py test

Reporting a Bug

	Update to the most recent master release if possible. Someone may
have already fixed your bug (such a wonderful scenario!)

	Search for similar issues. It’s possible somebody has encountered
this bug already. In this case comment your experience too!

	Clearly describe the issue including steps to reproduce when it is a
bug and preferably send a script that does so. Try to keep all the
things fully operational with the exception of the bug you want to
demonstrate. (Ok, I admit this is boring, but is probably the fastest
way to get thing working).

	Keep up to date with feedback from the project team, maybe you can
help us to test ;)

	If possible, submit a Pull Request with a failing test. It would be
wonderful to increase the test coverage!

	Consider the challenge of fixing the bug, I’m sure it can be funny or
at least very aggrandizing.

Requesting a Feature

	Search Issues for similar feature requests. It’s possible somebody
has already asked for this feature or provided a pull request that
we’re still discussing.

	Provide a clear and detailed explanation of the feature you want and
why it’s important to add. Keep in mind that features should be
useful to the majority of users and not just a small subset. If
you’re just targeting a minority of users, consider writing an add-on
library.

	If the feature is complex, consider writing some initial
documentation for it. If we do end up accepting the feature it will
need to be documented and this will also help us to understand it
better ourselves.

	Attempt a Pull Request. If you’re at all able, start writing some
code. We always have more work to do than time to do it. If you can
write some code then that will speed the process along.

Note

This guide was partially copied from

	ember.js [https://raw.githubusercontent.com/emberjs/ember.js/master/CONTRIBUTING.md]

	factory_girl [https://raw.github.com/thoughtbot/factory_girl_rails/master/CONTRIBUTING.md]

	puppet [https://raw.githubusercontent.com/puppetlabs/puppet/master/CONTRIBUTING.md]

	rails [http://edgeguides.rubyonrails.org/contributing_to_ruby_on_rails.html#contributing-to-the-rails-documentation]

Please consider reading them. They are just great!

 Copyright 2016, Anderson Bravalheri.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pyangext 0.0.1 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pyangext	

 	
 	
 pyangext.cli	

 	
 	
 pyangext.definitions	

 	
 	
 pyangext.paths	

 	
 	
 pyangext.utils	

 Copyright 2016, Anderson Bravalheri.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pyangext 0.0.1 documentation

Index

 B
 | C
 | D
 | E
 | F
 | H
 | I
 | P
 | Q
 | S
 | W
 | Y

B

 	

 	BUILT_IN_TYPES (in module pyangext.definitions)

C

 	

 	check() (in module pyangext.utils)

 	compare_prefixed() (in module pyangext.utils)

 	

 	create_context() (in module pyangext.utils)

D

 	

 	DATA_STATEMENTS (in module pyangext.definitions)

 	discover() (in module pyangext.paths)

 	

 	dump() (in module pyangext.utils)

E

 	

 	expanded() (in module pyangext.paths)

 	

 	export_path() (in module pyangext.cli)

F

 	

 	find() (in module pyangext.utils)

H

 	

 	HEADER_STATEMENTS (in module pyangext.definitions)

I

 	

 	ID_STATEMENTS (in module pyangext.definitions)

P

 	

 	parse() (in module pyangext.utils)

 	PREFIX_SEPARATOR (in module pyangext.definitions)

 	print_path() (in module pyangext.cli)

 	pyangext (module)

 	

 	pyangext.cli (module)

 	pyangext.definitions (module)

 	pyangext.paths (module)

 	pyangext.utils (module)

Q

 	

 	qualify_str() (in module pyangext.utils)

S

 	

 	select() (in module pyangext.utils)

W

 	

 	walk() (in module pyangext.utils)

Y

 	

 	YANG_KEYWORDS (in module pyangext.definitions)

 Copyright 2016, Anderson Bravalheri.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		pyangext 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Anderson Bravalheri.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/down.png

_modules/pyangext/cli.html

 Navigation

 		
 index

 		
 modules |

 		pyangext 0.0.1 documentation »

 		Module code »

 Source code for pyangext.cli

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""Extension for the pyang command line interface.

This module includes tools for augmenting ``PYANG_PLUGINPATH`` with
the location of auto-discovered pyang plugins.

Pyang do not use the ``setuptools`` to register plugins. Instead it requires
that the paths of all directories containing plugins to be present in the
``PYANG_PLUGINPATH`` environment variable.

``pyangext`` reads all entry points under ``yang.plugins``, detect the path
to the file that contains the function registered, and builds a list with
the containing directories.

In this sense, ``pyangext run`` command can be used as a bridge to
the ``pyang`` command, but using the auto-discovery feature.

Note:
 Including non pyang-plugin python files alongside pyang-plugins
 python files (in the same directory) will result in a pyang CLI crash.

 It is recommended that the function registered as entry-point follows
 the proprietary pyang plugin convention, or in other words:

 - it should be named ``pyang_plugin_init``
 - it should call ``pyang.plugin.register_plugin`` with an instance of
 ``pyang.plugin.PyangPlugin`` as argument.

See Also:
 https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins

Command Line Interface
======================

 Usage:
 ``pyangext [OPTIONS] COMMAND [ARGS]``

 Options:
 -h, --help Show this message and exit.

 -v, --version Show the version and exit.

 --path Prints the auto discovered plugin path.
 Python packages that register an entry-point
 inside ``yang.plugins`` will be auto-detected.

 --init, --export-path Prints an export shell statement with the auto
 discovered plugin path.

 This may be used by shell script to configure
 ``PYANG_PLUGINPATH`` environment variable.

 Example: |example|

 --help Show this message and exit.

 Commands:
 :``call``: invoke pyang script with plugin path adjusted using
 auto-discovery.

.. |example| raw:: html

 <code><pre>eval $(pyangext --export-path)</pre></code>
"""
import sys
from os import environ
from os.path import pathsep
from subprocess import Popen
from textwrap import dedent

from six.moves import shlex_quote

import click

from . import __version__ # noqa
from .paths import expanded

__author__ = "Anderson Bravalheri"
__copyright__ = "Copyright (C) 2016 Anderson Bravalheri"
__license__ = "mozilla"

def _fixdoc(func):
 """Return a new text with the text wrapping in a function's docstring"""
 docstring = dedent(func.__doc__)
 lines = (' '.join(line.split()) for line in docstring.split('\n\n'))

 new_docstring = "\n".join(lines)

 return new_docstring

click option callback
[docs]def print_path(ctx, _, value):
 """\
 Prints the auto discovered plugin path.

 Packages that register an ``yang.plugins``
 entry-point will be auto-detected.
 """
 if not value or ctx.resilient_parsing:
 return

 click.echo(pathsep.join(expanded()))
 ctx.exit()

click option callback
[docs]def export_path(ctx, _, value):
 """\
 Prints an export shell statement with the auto discovered plugin path.

 This may be used by shell script to configure ``PYANG_PLUGINPATH``
 environment variable.

 Example:
 ::

 eval $(pyangext --export-path)
 """
 if not value or ctx.resilient_parsing:
 return

 click.echo(
 'export PYANG_PLUGINPATH=' +
 shlex_quote(pathsep.join(expanded())))
 ctx.exit()

@click.group()
@click.help_option('-h', '--help')
@click.version_option(__version__, '-v', '--version')
@click.option(
 '--path', help=_fixdoc(print_path),
 is_flag=True, expose_value=False, callback=print_path)
@click.option(
 '--init', '--export-path', help=_fixdoc(export_path),
 is_flag=True, expose_value=False, callback=export_path)
def call():
 """pyang + sensible extensions

 Includes self-registered pyang plugin auto-discovery
 """
 pass

@call.command(
 'run', context_settings={'ignore_unknown_options': True})
@click.argument('args', nargs=-1, type=click.UNPROCESSED)
def call_pyang(args):
 """invoke pyang script with plugin path adjusted using auto-discovery."""

 environ['PYANG_PLUGINPATH'] = pathsep.join(expanded())
 proc = Popen(['pyang'] + list(args), stdout=sys.stdout, stderr=sys.stderr)
 proc.wait()
 return proc.returncode

 © Copyright 2016, Anderson Bravalheri.
 Created using Sphinx 1.3.5.

_modules/pyangext/paths.html

 Navigation

 		
 index

 		
 modules |

 		pyangext 0.0.1 documentation »

 		Module code »

 Source code for pyangext.paths

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""Automatically discover pyang plugins by reading setuptools entry-points."""

import sys
from os import environ
from os.path import dirname, pathsep

import pkg_resources

__author__ = "Anderson Bravalheri"
__copyright__ = "Copyright (C) 2016 Anderson Bravalheri"
__license__ = "mozilla"

__all__ = ['discover', 'expanded']

[docs]def discover():
 """Discovers pyang plugins registered using setuptools entry points.

 Collects the path for all python modules that have functions
 registered as an entry point inside ``yang.plugins`` group.

 Ideally the function registered should be named ``pyang_plugin_init``.
 It is also important to not include non-pyang-plugin python modules
 in the same directory of this module.

 Returns:
 Array of paths that contains python modules with pyang plugins.

 Reference:
 https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins
 """

 dirs = []
 for plugin in pkg_resources.iter_entry_points('pyang.plugins'):
 try:
 dirs.append(
 dirname(sys.modules[plugin.load().__module__].__file__))
 except (KeyError, AttributeError):
 pass

 return dirs

[docs]def expanded():
 """Combines the auto-discovered plugin paths with env ``PYANG_PLUGINPATH``.

 This function appends paths discovered using ``discover`` function
 to the list provided by ``PYANG_PLUGINPATH`` environment variable.
 It also removes duplicated entries from the resulting list.

 Returns:
 Array of paths that contains python modules with pyang plugins.
 """
 original = environ.get('PYANG_PLUGINPATH', '').split(pathsep)
 registered = discover()

 new = original + registered
 seen = set()
 seen_add = seen.add
 return [
 path
 for path in new
 if path and not (path in seen or seen_add(path))
]

 © Copyright 2016, Anderson Bravalheri.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		pyangext 0.0.1 documentation »

 All modules for which code is available

		pyangext.cli

		pyangext.paths

		pyangext.utils

 © Copyright 2016, Anderson Bravalheri.
 Created using Sphinx 1.3.5.

_modules/pyangext/utils.html

 Navigation

 		
 index

 		
 modules |

 		pyangext 0.0.1 documentation »

 		Module code »

 Source code for pyangext.utils

-*- coding: utf-8 -*-
"""Utility belt for working with ``pyang`` and ``pyangext``."""
import io
import logging
from os.path import isfile
from warnings import warn

from six import StringIO

from pyang import Context, FileRepository
from pyang.error import err_level, err_to_str, error_codes
from pyang.translators import yang
from pyang.yang_parser import YangParser

from .definitions import PREFIX_SEPARATOR

__all__ = [
 'create_context',
 'compare_prefixed',
 'qualify_str',
 'select',
 'find',
 'dump',
 'check',
 'parse',
 'walk',
]

logging.basicConfig(level=logging.INFO)
logging.captureWarnings(True)
LOGGER = logging.getLogger(__name__)

DEFAULT_OPTIONS = {
 'path': [],
 'deviations': [],
 'features': [],
 'format': 'yang',
 'keep_comments': True,
 'no_path_recurse': False,
 'trim_yin': False,
 'yang_canonical': False,
 'yang_remove_unused_imports': False,
 # -- errors
 'ignore_error_tags': [],
 'ignore_errors': [],
 'list_errors': True,
 'print_error_code': False,
 'errors': [],
 'warnings': [code for code, desc in error_codes.items() if desc[0] > 4],
 'verbose': True,
}
"""Default options for pyang command line"""

_COPY_OPTIONS = [
 'canonical',
 'max_line_len',
 'max_identifier_len',
 'trim_yin',
 'lax_xpath_checks',
 'strict',
]
"""copy options to pyang context options"""

class objectify(object): # pylint: disable=invalid-name
 """Utility for providing object access syntax (.attr) to dicts"""

 def __init__(self, *args, **kwargs):
 for entry in args:
 self.__dict__.update(entry)

 self.__dict__.update(kwargs)

 def __getattr__(self, _):
 return None

 def __setattr__(self, attr, value):
 self.__dict__[attr] = value

def _parse_features_string(feature_str):
 if feature_str.find(':') == -1:
 return (feature_str, [])

 [module_name, rest] = feature_str.split(':', 1)
 if rest == '':
 return (module_name, [])

 features = rest.split(',')
 return (module_name, features)

[docs]def create_context(path='.', *options, **kwargs):
 """Generates a pyang context.

 The dict options and keyword arguments are similar to the command
 line options for ``pyang``. For ``plugindir`` use env var
 ``PYANG_PLUGINPATH``. For ``path`` option use the argument with the
 same name, or ``PYANG_MODPATH`` env var.

 Arguments:
 path (str): location of YANG modules.
 (Join string with ``os.pathsep`` for multiple locations).
 Default is the current working dir.
 *options: list of dicts, with options to be passed to context.
 See bellow.
 **kwargs: similar to ``options`` but have a higher precedence.
 See bellow.

 Keyword Arguments:
 print_error_code (bool): On errors, print the error code instead
 of the error message. Default ``False``.
 warnings (list): If contains ``error``, treat all warnings
 as errors, except any other error code in the list.
 If contains ``none``, do not report any warning.
 errors (list): Treat each error code container as an error.
 ignore_error_tags (list): Ignore error code.
 (For a list of error codes see ``pyang --list-errors``).
 ignore_errors (bool): Ignore all errors. Default ``False``.
 canonical (bool): Validate the module(s) according to the
 canonical YANG order. Default ``False``.
 yang_canonical (bool): Print YANG statements according to the
 canonical order. Default ``False``.
 yang_remove_unused_imports (bool): Remove unused import statements
 when printing YANG. Default ``False``.
 trim_yin (bool): In YIN input modules, trim whitespace
 in textual arguments. Default ``False``.
 lax_xpath_checks (bool): Lax check of XPath expressions.
 Default ``False``.
 strict (bool): Force strict YANG compliance. Default ``False``.
 max_line_len (int): Maximum line length allowed. Disabled by default.
 max_identifier_len (int): Maximum identifier length allowed.
 Disabled by default.
 features (list): Features to support, default all.
 Format ``<modname>:[<feature>,]*``.
 keep_comments (bool): Do not discard comments. Default ``True``.
 no_path_recurse (bool): Do not recurse into directories
 in the yang path. Default ``False``.

 Returns:
 pyang.Context: Context object for ``pyang`` usage
 """
 # deviations (list): Deviation module (NOT CURRENTLY WORKING).

 opts = objectify(DEFAULT_OPTIONS, *options, **kwargs)
 repo = FileRepository(path, no_path_recurse=opts.no_path_recurse)

 ctx = Context(repo)
 ctx.opts = opts

 for attr in _COPY_OPTIONS:
 setattr(ctx, attr, getattr(opts, attr))

 # make a map of features to support, per module (taken from pyang bin)
 for feature_name in opts.features:
 (module_name, features) = _parse_features_string(feature_name)
 ctx.features[module_name] = features

 # apply deviations (taken from pyang bin)
 for file_name in opts.deviations:
 with io.open(file_name, "r", encoding="utf-8") as fd:
 module = ctx.add_module(file_name, fd.read())
 if module is not None:
 ctx.deviation_modules.append(module)

 return ctx

[docs]def qualify_str(arg, prefix_sep=PREFIX_SEPARATOR):
 """Transform prefixed strings in tuple ``(prefix, string)``"""
 response = arg if isinstance(arg, tuple) else tuple(arg.split(prefix_sep))
 if len(response) == 2:
 return response

 return ('', response[0])

[docs]def compare_prefixed(arg1, arg2,
 prefix_sep=PREFIX_SEPARATOR, ignore_prefix=False):
 """Compare 2 arguments : prefixed strings or tuple ``(prefix, string)``

 Arguments:
 arg1 (str or tuple): first argument
 arg2 (str or tuple): first argument
 prefix_sep (str): prefix string separator (default: ``':'``)

 Returns:
 bool
 """
 cmp1 = qualify_str(arg1, prefix_sep=prefix_sep)
 cmp2 = qualify_str(arg2, prefix_sep=prefix_sep)

 if ignore_prefix:
 return cmp1[-1:] == cmp2[-1:]

 return cmp1 == cmp2

[docs]def select(statements, keyword=None, arg=None, ignore_prefix=False):
 """Given a list of statements filter by keyword, or argument or both.

 Arguments:
 statements (list of pyang.statements.Statement):
 list of statements to be filtered.
 keyword (str): if specified the statements should have this keyword
 arg (str): if specified the statements should have this argument

 ``keyword`` and ``arg`` can be also used as keyword arguments.

 Returns:
 list: nodes that matches the conditions
 """
 response = []
 for item in statements:
 if (keyword and keyword != item.keyword and
 not compare_prefixed(
 keyword, item.raw_keyword, ignore_prefix=ignore_prefix)):
 continue

 if (arg and arg != item.arg and
 not compare_prefixed(
 arg, item.arg, ignore_prefix=ignore_prefix)):
 continue

 response.append(item)

 return response

[docs]def find(parent, keyword=None, arg=None, ignore_prefix=False):
 """Select all sub-statements by keyword, or argument or both.

 See Also:
 function :func:`select`
 """
 return select(parent.substmts, keyword, arg, ignore_prefix)

[docs]def walk(parent, select=lambda x: x, apply=lambda x: x, key='substmts'):
 # pylint: disable=redefined-builtin,redefined-outer-name
 """Recursivelly find nodes and/or apply a function to them.

 Arguments:
 parent (pyang.statements.Statement): root of the subtree were
 the search will take place.
 select: optional callable that receives a node and returns a bool
 (True if the node matches the criteria)
 apply: optional callable that are going to be applied to the node
 if it matches the criteria
 key (str): property where the children nodes are stored,
 default is ``substmts``

 Returns:
 list: results collected from the apply function
 """
 results = []
 if select(parent):
 results.append(apply(parent))

 if hasattr(parent, key):
 children = getattr(parent, key)
 for child in children:
 results.extend(walk(child, select, apply, key))

 return results

[docs]def dump(node, file_obj=None, prev_indent='', indent_string=' ', ctx=None):
 """Generate a string representation of an abstract syntax tree.

 Arguments:
 node (pyang.statements.Statement): object to be represented
 file_obj (file): *file-like* object where the representation
 will be dumped. If nothing is passed, the method returns
 a string

 Keyword Arguments:
 prev_indent (str): string to be added to the produced indentation
 indent_string (str): string to be used as indentation
 ctx (pyang.Context): context object used to generate string
 representation. If no context is passed, a dummy object
 is used with default configuration

 Returns:
 str: text content if ``file_obj`` is not specified
 """
 # create a buffer to allow string return if no file_obj given
 _file_obj = file_obj or StringIO()

 # process AST
 yang.emit_stmt(
 ctx or create_context(), node, _file_obj, 1, None,
 prev_indent, indent_string)

 # one-liners <3: if no file_obj get buffer content and close it!
 return file_obj or (_file_obj.getvalue(), _file_obj.close())[0]

[docs]def check(ctx, rescue=False):
 """Check existence of errors or warnings in context.

 Code mostly borrowed from ``pyang`` script.

 Arguments:
 ctx (pyang.Context): pyang context to be checked.

 Keyword Arguments:
 rescue (bool): if ``True``, no exception/warning will be raised.

 Raises:
 SyntaxError: if errors detected

 Warns:
 SyntaxWarning: if warnings detected

 Returns:
 tuple: (list of errors, list of warnings), if ``rescue`` is ``True``
 """
 errors = []
 warnings = []
 opts = ctx.opts

 if opts.ignore_errors:
 return (errors, warnings)

 for (epos, etag, eargs) in ctx.errors:
 if (hasattr(opts, 'ignore_error_tags') and
 etag in opts.ignore_error_tags):
 continue
 if not ctx.implicit_errors and hasattr(epos.top, 'i_modulename'):
 # this module was added implicitly (by import); skip this error
 # the code includes submodules
 continue
 elevel = err_level(etag) # elevel 4 -> warning
 explain = err_to_str(etag, eargs)
 reason = etag if opts.print_error_code else explain
 if 'unexpected keyword "description"' in reason:
 # TODO: WTF pyang bug??
 elevel = 4
 message = '({}) {}'.format(str(epos), reason)
 if (elevel >= 4 or etag in opts.warnings) and etag not in opts.errors:
 if 'error' in opts.warnings and etag not in opts.warnings:
 pass
 elif 'none' in opts.warnings:
 continue
 else:
 warnings.append(message)
 continue

 errors.append(message)

 if rescue:
 return (errors, warnings)

 if warnings:
 for message in warnings:
 warn(message, SyntaxWarning)

 if errors:
 raise SyntaxError('\n'.join(errors))

 return (errors, warnings)

[docs]def parse(text, ctx=None):
 """Parse a YANG statement into an Abstract Syntax subtree.

 Arguments:
 text (str): file name for a YANG module or text
 ctx (optional pyang.Context): context used to validate text

 Returns:
 pyang.statements.Statement: Abstract syntax subtree

 Note:
 The ``parse`` function can be used to parse small amounts of text.
 If yout plan to parse an entire YANG (sub)module, please use instead::

 ast = ctx.add_module(module_name, text_contet)

 It is also well known that ``parse`` function cannot solve
 YANG deviations yet.
 """
 parser = YangParser()

 filename = 'parser-input'

 ctx_ = ctx or create_context()

 if isfile(text):
 filename = text
 with open(filename, 'r') as fp:
 text = fp.read()

 # ensure reported errors are just from parsing
 old_errors = ctx_.errors
 ctx_.errors = []

 ast = parser.parse(ctx_, filename, text)

 # look for errors and warnings
 check(ctx_)

 # restore other errors
 ctx_.errors = old_errors

 return ast

 © Copyright 2016, Anderson Bravalheri.
 Created using Sphinx 1.3.5.

