
pyangext Documentation
Release 0.0.1

(none)

June 02, 2016

Contents

1 Contents 3
1.1 pyangext . 3
1.2 pyangext . 5
1.3 License . 10
1.4 Developers . 17
1.5 Changelog . 17
1.6 How to contribute . 17

2 Indices and tables 21

Python Module Index 23

i

ii

pyangext Documentation, Release 0.0.1

pyang + sensible extensions

Contents 1

pyangext Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Contents

1.1 pyangext

Sensible extensions for pyang

1.1.1 What’s this all about?

YANG is a data modeling language born in the context of configuration and management of network devices (like
routers and other internet-related stuff). It is envisioned to work with XML data encoding and remote procedure
calls (so 2000s ...), but it is extremelly flexible and can be used for a multitude of purposes. In turn, pyang is
a python project that provides parsing, validation, transformation and code generation functionalities. Despite of
being extensible, the pyang code is a little bit complex, and the documentation scarce. This makes the task of
building plugins difficult.

pyangext aims to provide a common foundation for plugins, wrapping pyang features, and making easier to use it
programatically outside pyang own code-base.

If you are one of the pyang authors...

You guys have done an amazing job, please don’t feel upset about this documentation. I’m trying to make it
interesting and a little bit funny. The ultimate goal is to have an amazing pyang environment, and if you would
like to merge pyangext inside pyang, please let me know.

1.1.2 Getting Started

If you are not a plugin writer

Well, pyangext will not exactly change your life... but you can have a little benefit from it, so let’s install all the
things!

sudo pip install pyangext
drop sudo if you are using a virtualenv or pyenv

There are some python packages that register themselves as pyang plugins using setuptools entry-points. While
pyang does not nativelly support it, pyangextwill consider it and generate a complete plugin path. You can activate
it by doing:

3

https://github.com/mbj4668/pyang
http://tools.ietf.org/html/rfc6020
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang
https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins
https://github.com/mbj4668/pyang

pyangext Documentation, Release 0.0.1

eval $(pyangext --export-path)

If you like it, you can also include it in your .(ba|z)shrc file.

DONE

If you ARE a plugin writer

You have probably noticed that pyang does not support the standard setuptools entry-points way of writing
plugins. Instead it requires that the user either copies the plugin to the pyang plugins directory, or changes manually
the PYANG_PLUGINPATH env var. Sometimes this makes difficult to describe how to use your plugin, e.g. pyangbind.

Using, pyangext you can:

1. Create an empty plugin package inside your project (folder with just and empty __init__.py file inside).

2. Put just your plugin modules inside it (.py files containing pyang_plugin_init function).

3. Register a setuptools entry-point under the yang.plugins section, with the name of your plugin, pointint
to that function.

4. Ask your users in the documentation to use eval $(pyangext --export-path) before runing pyang,
or exchange the pyang shell commad by pyangext run with the same arguments.

5. Distribute your package using PyPI/pip tools.

Additionally pyangext provides two other submodules with functions that can be used in your code. The
pyangext.utils module provides functions like create_context, parse, dump, walk. This functions
are very useful, and a little example is provided bellow:

from pyangext.utils import create_context, dump, find, parse, walk
ctx = create_context(keep_comments=True, features=['if:if-mib'])
ast = parse('leaf id { type int32; }', ctx) # tree-ish structure
print(dump(ast, ctx)) # produce YANG code
used_types = walk(ast,

select=lambda node: node.keyword == 'type',
apply=lambda node: node.arg)

=> ['int32']
int32_nodes = find(ast, 'type', 'int32') # list with 1 object

pyang.Context object plays a central role in the pyang architecture. The create_context can be used to
create this object in a similar way it is created by the pyang CLI.

The pyangext.definitions on the other hand provides some constants like the BUILT_IN_TYPES list.

Note: There are few well known issues with create_context and parse functions preventing them to be used
by standalone python scripts, like the lack of YANG deviation support. Despite they can be used in most situations,
the prefered way of manipulating the YANG Abstract Syntax Tree (AST) is yet writing a plugin.

See also:

pyangext.cli pyangext.utils

1.1.3 Stuff Doesn’t Work

This work was tested and I think it’s stable, but any feedback you can give me on this would be gratefully received
(see section Reporting a Bug at Contribution Guidelines.).

4 Chapter 1. Contents

https://github.com/mbj4668/pyang
https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins
https://github.com/mbj4668/pyang
https://github.com/robshakir/pyangbind
https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang
http://pyangext.readthedocs.io/en/latest/contributing.html

pyangext Documentation, Release 0.0.1

1.1.4 Can I help?

Yes, please! Contributions of any kind are welcome, and also feel free to ask your questions!

Please take a look at the Contribution Guidelines.

Well-known list of TODOs

• Make sure augment, deviation and include work with both ctx.add_module and parse. (by
writing tests and making it pass).

• Use ctx.add_module under the hood when a file name is passed to parse. If it is a module, why not add
it to context as well?

• Make parse and dump work with yin format.

Doubts

• Perform ctx.validate and validate_module under the hood?

• Abstract Context and i_ magic method?

Ultimate Goals

• Allow pyang plugins to be written as standalone python scripts. (I think it is better to have small focused
scripts, instead of a huge amount of options in the pyang CLI)

• Merged into pyang own code base.

1.2 pyangext

1.2.1 pyangext package

Submodules

pyangext.cli module

Extension for the pyang command line interface.

This module includes tools for augmenting PYANG_PLUGINPATH with the location of auto-discovered pyang plug-
ins.

Pyang do not use the setuptools to register plugins. Instead it requires that the paths of all directories containing
plugins to be present in the PYANG_PLUGINPATH environment variable.

pyangext reads all entry points under yang.plugins, detect the path to the file that contains the function regis-
tered, and builds a list with the containing directories.

In this sense, pyangext run command can be used as a bridge to the pyang command, but using the auto-
discovery feature.

Note: Including non pyang-plugin python files alongside pyang-plugins python files (in the same directory) will
result in a pyang CLI crash.

1.2. pyangext 5

http://pyangext.readthedocs.io/en/latest/contributing.html
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang
https://github.com/mbj4668/pyang

pyangext Documentation, Release 0.0.1

It is recommended that the function registered as entry-point follows the proprietary pyang plugin convention, or in
other words:

• it should be named pyang_plugin_init

• it should call pyang.plugin.register_plugin with an instance of pyang.plugin.PyangPlugin
as argument.

See also:

https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins

Command Line Interface

Usage: pyangext [OPTIONS] COMMAND [ARGS]

Options:

-h, --help Show this message and exit.

-v, --version Show the version and exit.

--path Prints the auto discovered plugin path. Python packages that
register an entry-point inside yang.plugins will be auto-
detected.

--init, --export-path Prints an export shell statement with the auto discovered plugin
path.

This may be used by shell script to configure
PYANG_PLUGINPATH environment variable.

Example:

--help Show this message and exit.

Commands:

call invoke pyang script with plugin path adjusted using auto-discovery.

pyangext.cli.export_path(ctx, _, value)
Prints an export shell statement with the auto discovered plugin path.

This may be used by shell script to configure PYANG_PLUGINPATH environment variable.

Example

eval $(pyangext --export-path)

pyangext.cli.print_path(ctx, _, value)
Prints the auto discovered plugin path.

Packages that register an yang.plugins entry-point will be auto-detected.

pyangext.definitions module

Meta information about YANG modeling language.

See also:

6 Chapter 1. Contents

https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins

pyangext Documentation, Release 0.0.1

https://tools.ietf.org/html/rfc6020

pyangext.definitions.BUILT_IN_TYPES = [’binary’, ‘bits’, ‘boolean’, ‘decimal64’, ‘empty’, ‘enumeration’, ‘identityref’, ‘instance-identifier’, ‘int16’, ‘int32’, ‘int64’, ‘int8’, ‘leafref’, ‘string’, ‘uint16’, ‘uint32’, ‘uint64’, ‘uint8’, ‘union’]
Types supported by default in the YANG language.

pyangext.definitions.DATA_STATEMENTS = [’container’, ‘leaf’, ‘leaf-list’, ‘list’, ‘anyxml’]
Statements that denote a data node in the abstract tree.

pyangext.definitions.HEADER_STATEMENTS = [’organization’, ‘contact’, ‘revision’, ‘yang-version’]
Descriptive statements used in the header of a module or submodule.

pyangext.definitions.ID_STATEMENTS = [’namespace’, ‘prefix’]
Statements used to identify the module.

pyangext.definitions.PREFIX_SEPARATOR = ‘:’
Character used to denote prefix in YANG language.

pyangext.definitions.YANG_KEYWORDS = [’action’, ‘anydata’, ‘anyxml’, ‘argument’, ‘augment’, ‘base’, ‘belongs-to’, ‘bit’, ‘case’, ‘choice’, ‘config’, ‘contact’, ‘container’, ‘default’, ‘description’, ‘deviate’, ‘deviation’, ‘enum’, ‘error-app-tag’, ‘error-message’, ‘extension’, ‘feature’, ‘fraction-digits’, ‘grouping’, ‘identity’, ‘if-feature’, ‘import’, ‘include’, ‘input’, ‘key’, ‘leaf’, ‘leaf-list’, ‘length’, ‘list’, ‘mandatory’, ‘max-elements’, ‘min-elements’, ‘modifier’, ‘module’, ‘must’, ‘namespace’, ‘notification’, ‘ordered-by’, ‘organization’, ‘output’, ‘path’, ‘pattern’, ‘position’, ‘prefix’, ‘presence’, ‘range’, ‘reference’, ‘refine’, ‘require-instance’, ‘revision’, ‘revision-date’, ‘rpc’, ‘status’, ‘submodule’, ‘type’, ‘typedef’, ‘unique’, ‘units’, ‘uses’, ‘value’, ‘when’, ‘yang-version’, ‘yin-element’]
YANG language Keywords.

pyangext.paths module

Automatically discover pyang plugins by reading setuptools entry-points.

pyangext.paths.discover()
Discovers pyang plugins registered using setuptools entry points.

Collects the path for all python modules that have functions registered as an entry point inside yang.plugins
group.

Ideally the function registered should be named pyang_plugin_init. It is also important to not include
non-pyang-plugin python modules in the same directory of this module.

Returns Array of paths that contains python modules with pyang plugins.

Reference: https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins

pyangext.paths.expanded()
Combines the auto-discovered plugin paths with env PYANG_PLUGINPATH.

This function appends paths discovered using discover function to the list provided by
PYANG_PLUGINPATH environment variable. It also removes duplicated entries from the resulting list.

Returns Array of paths that contains python modules with pyang plugins.

pyangext.utils module

Utility belt for working with pyang and pyangext.

pyangext.utils.create_context(path=’.’, *options, **kwargs)
Generates a pyang context.

The dict options and keyword arguments are similar to the command line options for pyang. For
plugindir use env var PYANG_PLUGINPATH. For path option use the argument with the same name,
or PYANG_MODPATH env var.

Parameters

• path (str) – location of YANG modules. (Join string with os.pathsep for multiple
locations). Default is the current working dir.

1.2. pyangext 7

https://tools.ietf.org/html/rfc6020
https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins
http://docs.python.org/2.7/library/functions.html#str

pyangext Documentation, Release 0.0.1

• *options – list of dicts, with options to be passed to context. See bellow.

• **kwargs – similar to options but have a higher precedence. See bellow.

Keyword Arguments

• print_error_code (bool) – On errors, print the error code instead of the error message.
Default False.

• warnings (list) – If contains error, treat all warnings as errors, except any other error code
in the list. If contains none, do not report any warning.

• errors (list) – Treat each error code container as an error.

• ignore_error_tags (list) – Ignore error code. (For a list of error codes see pyang
--list-errors).

• ignore_errors (bool) – Ignore all errors. Default False.

• canonical (bool) – Validate the module(s) according to the canonical YANG order. Default
False.

• yang_canonical (bool) – Print YANG statements according to the canonical order. Default
False.

• yang_remove_unused_imports (bool) – Remove unused import statements when printing
YANG. Default False.

• trim_yin (bool) – In YIN input modules, trim whitespace in textual arguments. Default
False.

• lax_xpath_checks (bool) – Lax check of XPath expressions. Default False.

• strict (bool) – Force strict YANG compliance. Default False.

• max_line_len (int) – Maximum line length allowed. Disabled by default.

• max_identifier_len (int) – Maximum identifier length allowed. Disabled by default.

• features (list) – Features to support, default all. Format <modname>:[<feature>,]*.

• keep_comments (bool) – Do not discard comments. Default True.

• no_path_recurse (bool) – Do not recurse into directories in the yang path. Default False.

Returns Context object for pyang usage

Return type pyang.Context

pyangext.utils.compare_prefixed(arg1, arg2, prefix_sep=’:’, ignore_prefix=False)
Compare 2 arguments : prefixed strings or tuple (prefix, string)

Parameters

• arg1 (str or tuple) – first argument

• arg2 (str or tuple) – first argument

• prefix_sep (str) – prefix string separator (default: ’:’)

Returns bool

pyangext.utils.qualify_str(arg, prefix_sep=’:’)
Transform prefixed strings in tuple (prefix, string)

pyangext.utils.select(statements, keyword=None, arg=None, ignore_prefix=False)
Given a list of statements filter by keyword, or argument or both.

8 Chapter 1. Contents

http://docs.python.org/2.7/library/functions.html#str

pyangext Documentation, Release 0.0.1

Parameters

• statements (list of pyang.statements.Statement) – list of statements to
be filtered.

• keyword (str) – if specified the statements should have this keyword

• arg (str) – if specified the statements should have this argument

keyword and arg can be also used as keyword arguments.

Returns nodes that matches the conditions

Return type list

pyangext.utils.find(parent, keyword=None, arg=None, ignore_prefix=False)
Select all sub-statements by keyword, or argument or both.

See also:

function select()

pyangext.utils.dump(node, file_obj=None, prev_indent=’‘, indent_string=’ ‘, ctx=None)
Generate a string representation of an abstract syntax tree.

Parameters

• node (pyang.statements.Statement) – object to be represented

• file_obj (file) – file-like object where the representation will be dumped. If nothing
is passed, the method returns a string

Keyword Arguments

• prev_indent (str) – string to be added to the produced indentation

• indent_string (str) – string to be used as indentation

• ctx (pyang.Context) – context object used to generate string representation. If no context is
passed, a dummy object is used with default configuration

Returns text content if file_obj is not specified

Return type str

pyangext.utils.check(ctx, rescue=False)
Check existence of errors or warnings in context.

Code mostly borrowed from pyang script.

Parameters ctx (pyang.Context) – pyang context to be checked.

Keyword Arguments rescue (bool) – if True, no exception/warning will be raised.

Raises SyntaxError – if errors detected

Warns SyntaxWarning – if warnings detected

Returns (list of errors, list of warnings), if rescue is True

Return type tuple

pyangext.utils.parse(text, ctx=None)
Parse a YANG statement into an Abstract Syntax subtree.

Parameters

• text (str) – file name for a YANG module or text

1.2. pyangext 9

http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/functions.html#list
http://docs.python.org/2.7/library/functions.html#file
http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/functions.html#tuple
http://docs.python.org/2.7/library/functions.html#str

pyangext Documentation, Release 0.0.1

• ctx (optional pyang.Context) – context used to validate text

Returns Abstract syntax subtree

Return type pyang.statements.Statement

Note: The parse function can be used to parse small amounts of text. If yout plan to parse an entire YANG
(sub)module, please use instead:

ast = ctx.add_module(module_name, text_contet)

It is also well known that parse function cannot solve YANG deviations yet.

pyangext.utils.walk(parent, select=<function <lambda>>, apply=<function <lambda>>,
key=’substmts’)

Recursivelly find nodes and/or apply a function to them.

Parameters

• parent (pyang.statements.Statement) – root of the subtree were the search will
take place.

• select – optional callable that receives a node and returns a bool (True if the node matches
the criteria)

• apply – optional callable that are going to be applied to the node if it matches the criteria

• key (str) – property where the children nodes are stored, default is substmts

Returns results collected from the apply function

Return type list

Module contents

Critical missing features for pyang plugin users and authors.

1.3 License

Mozilla Public License, version 2.0

1. Definitions

1.1. "Contributor"

means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.

1.2. "Contributor Version"

means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributor's Contribution.

1.3. "Contribution"

means Covered Software of a particular Contributor.

10 Chapter 1. Contents

http://docs.python.org/2.7/library/functions.html#str
http://docs.python.org/2.7/library/functions.html#list

pyangext Documentation, Release 0.0.1

1.4. "Covered Software"

means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.

1.5. "Incompatible With Secondary Licenses"
means

a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or

b. that the Covered Software was made available under the terms of
version 1.1 or earlier of the License, but not also under the terms of
a Secondary License.

1.6. "Executable Form"

means any form of the work other than Source Code Form.

1.7. "Larger Work"

means a work that combines Covered Software with other material, in a
separate file or files, that is not Covered Software.

1.8. "License"

means this document.

1.9. "Licensable"

means having the right to grant, to the maximum extent possible, whether
at the time of the initial grant or subsequently, any and all of the
rights conveyed by this License.

1.10. "Modifications"

means any of the following:

a. any file in Source Code Form that results from an addition to,
deletion from, or modification of the contents of Covered Software; or

b. any new file in Source Code Form that contains any Covered Software.

1.11. "Patent Claims" of a Contributor

means any patent claim(s), including without limitation, method,
process, and apparatus claims, in any patent Licensable by such
Contributor that would be infringed, but for the grant of the License,
by the making, using, selling, offering for sale, having made, import,
or transfer of either its Contributions or its Contributor Version.

1.12. "Secondary License"

means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.

1.3. License 11

pyangext Documentation, Release 0.0.1

1.13. "Source Code Form"

means the form of the work preferred for making modifications.

1.14. "You" (or "Your")

means an individual or a legal entity exercising rights under this
License. For legal entities, "You" includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, "control" means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.

2. License Grants and Conditions

2.1. Grants

Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:

a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or
as part of a Larger Work; and

b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.

2.2. Effective Date

The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.

2.3. Limitations on Grant Scope

The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a
Contributor:

a. for any code that a Contributor has removed from Covered Software; or

b. for infringements caused by: (i) Your and any other third party's
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or

c. under Patent Claims infringed by Covered Software in the absence of
its Contributions.

This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with

12 Chapter 1. Contents

pyangext Documentation, Release 0.0.1

the notice requirements in Section 3.4).

2.4. Subsequent Licenses

No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).

2.5. Representation

Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights to
grant the rights to its Contributions conveyed by this License.

2.6. Fair Use

This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.

2.7. Conditions

Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.

3. Responsibilities

3.1. Distribution of Source Form

All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License, and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients' rights in the Source Code
Form.

3.2. Distribution of Executable Form

If You distribute Covered Software in Executable Form then:

a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and

b. You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter the
recipients' rights in the Source Code Form under this License.

3.3. Distribution of a Larger Work

You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for

1.3. License 13

pyangext Documentation, Release 0.0.1

the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).

3.4. Notices

You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty, or
limitations of liability) contained within the Source Code Form of the
Covered Software, except that You may alter any license notices to the
extent required to remedy known factual inaccuracies.

3.5. Application of Additional Terms

You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any
such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.

4. Inability to Comply Due to Statute or Regulation

If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute,
judicial order, or regulation then You must: (a) comply with the terms of
this License to the maximum extent possible; and (b) describe the
limitations and the code they affect. Such description must be placed in a
text file included with all distributions of the Covered Software under
this License. Except to the extent prohibited by statute or regulation,
such description must be sufficiently detailed for a recipient of ordinary
skill to be able to understand it.

5. Termination

5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing
basis, if such Contributor fails to notify You of the non-compliance by
some reasonable means prior to 60 days after You have come back into
compliance. Moreover, Your grants from a particular Contributor are
reinstated on an ongoing basis if such Contributor notifies You of the
non-compliance by some reasonable means, this is the first time You have
received notice of non-compliance with this License from such
Contributor, and You become compliant prior to 30 days after Your receipt
of the notice.

14 Chapter 1. Contents

pyangext Documentation, Release 0.0.1

5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter-claims, and cross-claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.

5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.

6. Disclaimer of Warranty

Covered Software is provided under this License on an "as is" basis,
without warranty of any kind, either expressed, implied, or statutory,
including, without limitation, warranties that the Covered Software is free
of defects, merchantable, fit for a particular purpose or non-infringing.
The entire risk as to the quality and performance of the Covered Software
is with You. Should any Covered Software prove defective in any respect,
You (not any Contributor) assume the cost of any necessary servicing,
repair, or correction. This disclaimer of warranty constitutes an essential
part of this License. No use of any Covered Software is authorized under
this License except under this disclaimer.

7. Limitation of Liability

Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from
such party's negligence to the extent applicable law prohibits such
limitation. Some jurisdictions do not allow the exclusion or limitation of
incidental or consequential damages, so this exclusion and limitation may
not apply to You.

8. Litigation

Any litigation relating to this License may be brought only in the courts
of a jurisdiction where the defendant maintains its principal place of
business and such litigation shall be governed by laws of that
jurisdiction, without reference to its conflict-of-law provisions. Nothing
in this Section shall prevent a party's ability to bring cross-claims or
counter-claims.

9. Miscellaneous

This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides that
the language of a contract shall be construed against the drafter shall not
be used to construe this License against a Contributor.

1.3. License 15

pyangext Documentation, Release 0.0.1

10. Versions of the License

10.1. New Versions

Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.

10.2. Effect of New Versions

You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward.

10.3. Modified Versions

If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).

10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses If You choose to distribute Source Code Form that is
Incompatible With Secondary Licenses under the terms of this version of
the License, the notice described in Exhibit B of this License must be
attached.

Exhibit A - Source Code Form License Notice

This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.

If it is not possible or desirable to put the notice in a particular file,
then You may include the notice in a location (such as a LICENSE file in a
relevant directory) where a recipient would be likely to look for such a
notice.

You may add additional accurate notices of copyright ownership.

Exhibit B - "Incompatible With Secondary Licenses" Notice

This Source Code Form is "Incompatible
With Secondary Licenses", as defined by
the Mozilla Public License, v. 2.0.

16 Chapter 1. Contents

pyangext Documentation, Release 0.0.1

1.4 Developers

• Anderson Bravalheri <andersonbravalheri@gmail.com>

1.5 Changelog

1.5.1 Version 0.0.1 (2016-06-01)

Features

• ast:

• add select, find, from_tuple, append (67724329)

• add walk function to traverse tree (1f334d3d)

• auto-discover: add plugins, setuptools way (10794a94)

• ctx: add utility function to context creation (72f43d90)

• parse: add parse function (str => AST) (ab3b465b)

Documentation

• improve doc generation and contents (e471c595)

• create_context: document options for context (c2ad6d0f)

• project: improve overall project docs. (e1b60ecd)

• requirements: create a separated req file (94882cd4)

Test

• cli: Add cli tests (11501c44)

1.6 How to contribute

Pull-requests and discussions are essential for any open-source project. Any contribution to this project will be con-
sidered lovely. Here’s just a quick guide to help you in this journey.

Please have in mind that nothing can be considered 100% truth and immutable (including this statement). This project
will not adhere to any strict way of development.

1.6.1 Pull-Requests

Github has two great GREAT articles about contributing: Contributing to Open Source on GitHub and Using pull
requests. Please make sure to read it in your lifetime (everyone that reads became a better person).

Note: Oh man, guides.github.com and help.github.com are astonishing!

1.4. Developers 17

mailto:andersonbravalheri@gmail.com
https://github.com/abravalheri/pyangext/commit/67724329d8383404863f9c6f7aa5496ba9c90bd9
https://github.com/abravalheri/pyangext/commit/1f334d3deaccd12366f110ec5f98dc4c29824b4c
https://github.com/abravalheri/pyangext/commit/10794a9412fbbda6f88ee8d4069960efd09bcffa
https://github.com/abravalheri/pyangext/commit/72f43d9012a61dc665626e613d45dbbd6d036807
https://github.com/abravalheri/pyangext/commit/ab3b465bd29bd334ca126f5a4b2ff39968a31948
https://github.com/abravalheri/pyangext/commit/e471c59593de288df9abbf4fd6196d20323d7b27
https://github.com/abravalheri/pyangext/commit/c2ad6d0fa006c801c4bdcb8bfa676effd3741d53
https://github.com/abravalheri/pyangext/commit/e1b60ecdf6df06bf30b11c19b75954356bad505f
https://github.com/abravalheri/pyangext/commit/94882cd41452e7892fa977ff846f72fea8cba4bc
https://github.com/abravalheri/pyangext/commit/11501c443bbfecc4f328466baea18f163ca95060
https://guides.github.com/activities/contributing-to-open-source/
https://help.github.com/articles/using-pull-requests/
https://help.github.com/articles/using-pull-requests/
https://guides.github.com/
https://help.github.com

pyangext Documentation, Release 0.0.1

Please, try to keep your commit messages as communicative as possible. There is a good reference for it as well.

Note: I usually think in the commit itself as an implicit subject of commit message. For example: [This commit]
Add .gitignore Also take a look at this commit message format proposal, that borrows some convention from
AngularJS.

Communication is always handy! If you have any doubt or would like to discuss your thoughts, you are more than
welcome to send me a message! Please comment directly on the code, open an issue, submit a pull request, mention
me anywhere... I think GitHub has good tools to help developers communicate and share experiences.

Code Guidelines

This repository try to adhere to PEP8 as much as possible.

Please make use of tools like flake8, pylint, isort, and pre-commit before submitting your code. There are configuration
files for all these tools in the root of the repository and the easiest way of starting is by doing:

sudo pip install pre-commit
drop sudo if you are using a virtualenv or pyenv
inside project directory:
pre-commit install
pre-commit run --all-files

Please also consider running the test suite before submitting a pull request:

python setup.py test

1.6.2 Reporting a Bug

• Update to the most recent master release if possible. Someone may have already fixed your bug (such a won-
derful scenario!)

• Search for similar issues. It’s possible somebody has encountered this bug already. In this case comment your
experience too!

• Clearly describe the issue including steps to reproduce when it is a bug and preferably send a script that does so.
Try to keep all the things fully operational with the exception of the bug you want to demonstrate. (Ok, I admit
this is boring, but is probably the fastest way to get thing working).

• Keep up to date with feedback from the project team, maybe you can help us to test ;)

• If possible, submit a Pull Request with a failing test. It would be wonderful to increase the test coverage!

• Consider the challenge of fixing the bug, I’m sure it can be funny or at least very aggrandizing.

1.6.3 Requesting a Feature

• Search Issues for similar feature requests. It’s possible somebody has already asked for this feature or provided
a pull request that we’re still discussing.

• Provide a clear and detailed explanation of the feature you want and why it’s important to add. Keep in mind that
features should be useful to the majority of users and not just a small subset. If you’re just targeting a minority
of users, consider writing an add-on library.

• If the feature is complex, consider writing some initial documentation for it. If we do end up accepting the
feature it will need to be documented and this will also help us to understand it better ourselves.

18 Chapter 1. Contents

https://github.com/erlang/otp/wiki/Writing-good-commit-messages
https://gist.github.com/abravalheri/34aeb7b18d61392251a2
https://github.com/angular/angular.js/blob/master/CONTRIBUTING.md
https://www.python.org/dev/peps/pep-0008/
https://flake8.readthedocs.io
https://www.pylint.org
https://github.com/timothycrosley/isort
http://pre-commit.com

pyangext Documentation, Release 0.0.1

• Attempt a Pull Request. If you’re at all able, start writing some code. We always have more work to do than
time to do it. If you can write some code then that will speed the process along.

Note: This guide was partially copied from

• ember.js

• factory_girl

• puppet

• rails

Please consider reading them. They are just great!

1.6. How to contribute 19

https://raw.githubusercontent.com/emberjs/ember.js/master/CONTRIBUTING.md
https://raw.github.com/thoughtbot/factory_girl_rails/master/CONTRIBUTING.md
https://raw.githubusercontent.com/puppetlabs/puppet/master/CONTRIBUTING.md
http://edgeguides.rubyonrails.org/contributing_to_ruby_on_rails.html#contributing-to-the-rails-documentation

pyangext Documentation, Release 0.0.1

20 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

21

pyangext Documentation, Release 0.0.1

22 Chapter 2. Indices and tables

Python Module Index

p
pyangext, 10
pyangext.cli, 5
pyangext.definitions, 6
pyangext.paths, 7
pyangext.utils, 7

23

pyangext Documentation, Release 0.0.1

24 Python Module Index

Index

B
BUILT_IN_TYPES (in module pyangext.definitions), 7

C
check() (in module pyangext.utils), 9
compare_prefixed() (in module pyangext.utils), 8
create_context() (in module pyangext.utils), 7

D
DATA_STATEMENTS (in module pyangext.definitions),

7
discover() (in module pyangext.paths), 7
dump() (in module pyangext.utils), 9

E
expanded() (in module pyangext.paths), 7
export_path() (in module pyangext.cli), 6

F
find() (in module pyangext.utils), 9

H
HEADER_STATEMENTS (in module

pyangext.definitions), 7

I
ID_STATEMENTS (in module pyangext.definitions), 7

P
parse() (in module pyangext.utils), 9
PREFIX_SEPARATOR (in module pyangext.definitions),

7
print_path() (in module pyangext.cli), 6
pyangext (module), 10
pyangext.cli (module), 5
pyangext.definitions (module), 6
pyangext.paths (module), 7
pyangext.utils (module), 7

Q
qualify_str() (in module pyangext.utils), 8

S
select() (in module pyangext.utils), 8

W
walk() (in module pyangext.utils), 10

Y
YANG_KEYWORDS (in module pyangext.definitions),

7

25

	Contents
	pyangext
	pyangext
	License
	Developers
	Changelog
	How to contribute

	Indices and tables
	Python Module Index

